本文旨在让新手快速了解 nGQL,掌握方向,之后可以脚踩在地上借助文档写出任何心中的 NebulaGraph 图查询。
在正式开始 nGQL 实操之前,记得先看过文档「快速入门流程」,部署、连接过 NebulaGraph,并且看过了「常用命令」。如果你还没看过这两个文档,为了跟上进度,记得先快速过一遍,上面两个文档链接可在文末「参考资料」中获取。
本教程目的在于让大家大概知道了 NebulaGraph 的查询语句后,解决“不知道什么样的查询应该用什么语句”的问题。
我们先强调一下概念:nGQL 是 NebulaGraph Query Language 的缩写,它表示 NebulaGraph 的查询语言,可以不严谨地分为这 5 部分:
大家可以保存下这份单页速查表,一次了解所有 nGQL 的用法。
NebulaGraph 的独有读查询语句的设计非常简洁,对初学者非常友好。它结合了管道的概念,做到了只涉及了几个关键词就可以描述出大多数的图查询模式。由于篇幅的问题,所有 DQL 查询语句的更多用法记得查阅本文的「参考资料」。
简单来说,nGQL 的独有 DQL 一共分成四类语句:
和两个特别的元素:
GO 的语义非常直观:从给定的起点,向外拓展,按需返回终点、起点的信息。
这里只是做了一个简单的 GO 语法示例,像 GO 实现的反向、双向拓展,指定可变跳数遍历等,更多 GO 语句用法可查阅参考资料。
和 GO 的从已知的点出发相反,LOOKUP 是一个类似于 SQL 里 SELECT 语义的关键字,它实际的作用也类似与关系型数据库中的扫表。
因为 NebulaGraph 中的数据默认是按照邻接表的形式存储,在分布式设计中,扫描一个类型的点、边是非常昂贵的,所以它被默认禁止了。NebulaGraph 索引的存在增加了类似于表结构数据库的排序数据,可以用来做像是 SELECT 的查询。
本文仅作 LOOKUP 语法的使用入门,关于索引原理和使用,比如:创建索引会有什么代价?索引会加速读么?记得查看文末的参考资料。
如字面意思,如果我们知道一个点、边的 ID,想要获取它上边的属性,这时候我们要用 FETCH PROP 而非 LOOKUP。
如果我们要找到指定两点之间的所有路径,一定要用 FIND PATH。
和路径查找类似,如果我们只给定一个起点和拓展步数,用 GET SUBGRAPH 可以帮我们获取同样的 BFS 出去的子图。
NebulaGraph 的管道设计和 Unix-Shell 的设计很像,可以将简单的几种语句结合起来,有强大的表达力。
除了以上的集中表达之外,NebulaGraph 独有查询语句还有聚合的表达参考 GROUP-BY,另外在文档里还有一个 Cheatsheet供大家查询一些复杂的例子。
从 NebulaGraph v2.0 起,openCypher 的 MATCH 语句也被 NebulaGraph 原生支持了。虽然 NebulaGraph 这里是一个“方言”,有一些使用细节差异。
MATCH 的基本表达是由 (v:tag_a) 包裹的点和 --> 或者 <-[:edge_type_1]- 表达的边组成的模式,再与 RETURN 结合表达输出。
如果你从 Cypher 的查询语言入门图数据库,可以从下边几个例子了解到若干 NebulaGraph 里的使用细节差异: